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jfetroductios 

A complete conception of large-scale atmospheric process«, 

determining the nature of the weather in many respects, can 

only be obtained by the inclusion of all basic factors in the 

baroclynic atmosphere* 

In the analysis of large-scale atmospheric processes we 

find it necessary to formulate mathematical theories which si 

the nature and evolution of the real fields of meteorological 

elements as exactly as possible» In principle, the mathematic 

constructions based on the application of the laws of hydro- 

thermodynamics in atmospheric conditions permit the pertinent 

system of nonlinear equations to determine the meteorological! 

elements of interest to us. Therefore, in forecasting meteors 

logical elements the solution of the complete system of nonli 

near hydrothermodynamic equations appears to be the Tundamen" 

assignment for meteorological theory. 



" The attempt to obtain weather forecasts the theoretical way 

by studying the system of hydrcdynamic equations was made for 

the first time by Richardson (9) in 1922, Richardson did not r'- ■ 

tain sufficient results because he did not tackle the problem 

the right methodical way. Richardson took the initial wind fiel< ' 

as the starting fact and hoped to obtain the evolution of at- 

mospheric currents with time on the basis of the solution of t5v  j 

equation system. Inasmuch as the initial field of velocity gen. ,-V 

rally includes manifold perturbations of.all kinds of scales, 

Richardson should have taken into account the evolution of all 

types of small (sound, gravitational) perturbations together 

. with the evolution of large-scale perturbations which are of 

meteorological interest, although the former are insignificant 

in meteorological respects, The description of the small per- 

turbations require the utilisation of correspondingly small 

scales and small time integrals. The length and time scales us 

by Richardson, were much larger than the degree of exactitude 

required; therefore» the sole forecast calculated by Richardso; 

did not stand the test. % 

The first feasible solution of the equation system for at-» 

mospheric processes was found by I«A. Kibel (2) in 1940. He 

' based his analysis on the assumption that large-scale atmos- 

pheric processes present themselves as quasi-geostrophic pro- 

cesses. This permitted I.A. Kibel to take the initial fields 

of pressure and temperature as starting factors and not the 



initial wind field; his problemJwas the calculation of changing 

pressure and temperature fields in tis:e* 

However, In I.A. Kibel*s analysis the possibilities'of qu" 

geostr.onhic samples were, not' completely exhausted* Therefore, 

the temperature derivative of tisae ■#-;■ was only determined wl 

a calculation of the horizontal mass transfer, and in the pres-- 

sure change «-2 the convergence factor..and the divergence of 
. ' d t _ ' -■.■ 

the air in the'-atmosphere were riöt considered» . 

In  other meteorological analyses of the Friedaiann-Kotshin 

School, the system of hydrothermbdynamic equations was used -mo: 

efficiently; the vortex velocity equation was examined as a pr 

•moting- equation connecting the complete alteration of the vor- 

tex With the divergence"of the air on the horizontal plane» . •" 

In 1941 M.E. Shvet« (6) obtained the expression for the 've.! 

tical velocity-in the shape of the integral according to alti-' 

.ttfde from the individual derivative. of the vortex velocity« ;.'■■' 

"In 3.943 BJh Blinova (1) managed to obtain the prognostic 

equations for pressure: and temperature T on a certain "average' 

atmospheric level through linearisation$taking into account th: 

sphericity of the surface' of the earth«, E.N, Blinova started 

with the condition-of maintenance of vorticity ot-jm^^Mi-m"1^^^- 

"MmMMtf  on the ae&n level and with the assumption that tempera- 

. tnre changes in the atmosphere depend only upon the .horizontal; 

transfer of homogeneous masses of different temperatures * B»lh 

: Blinova integrated the system of linear equations obtained in 

this manner /under general conditions, of the elementary field.- 



Foreign meteorologists see the possibility of utilizing hy- 

crodynamxc equations for weather forecasts in a different way, 

W, Ertel (&)  analysed the equation l 

obtained by him starting with the nature of the area of depen- 

dence of' eouation &&   upon the field of function (p,-&p); th; 
t) t 

result was a rvieteorolo^ically incorrect conclusion according 

to which it in impossible to calculate the future pressure rsa- 

In advance« The deficiency was clearly reflected in the result 

of A.M. ObuchovUi (3) analysis published in 1949 in which the 

author obtained a more complete equation in the examination o:i 

the barctrope sample of the atmosphere: 

1 dp    ^P   1 

X,.- « «L«l*2-   j    HL - altitude of homogeneous atmosphere;  the so- 

lutioa of this equation is 

<*P 
CO 

»•„■«,  i   «.««.  (pjAp)j K0(r)rdr, 
<H       J    f 

o 

^" WO will keep to the symbols used in the first part of thif 
cj- i tc*..x VvJ ■*■■w * , , 



2 
y x   - y 

r „ J.«——L— , K (r)  - Macdonald function of sero order. 

In 1950 N.I, Bulsgev obtained Bj^m^mi^s^t^^m^^- 

m$m&&&  for the change of pressure in the baroclynic atraos- 

phere underytlinear temperature^ The equation for the pressure 

change on the mean level of the troposphere was obtained as 

follows 

f - average temperature of troposphere; kljr k2, kj .- a cert 

.constant'quantity. 

This analysis also brought us the formula for the calcu- 

lation of vertical velocity at different levels of the atme: 

phere'i 

&pu «,(z)A{?, p) - 0,Az)  {(Y, zip) f  (p,Af)J , 

■p - -pressure at the mean level of atmosphere; (X^{z),  <Ä (z) ■- 

the coefficient dependent on the altitude, 

Gharneyfs (?) analysis examined the barotropic sample o.f 

the atmosphere and the simple baroclynic sample. The author 

uses the equation for the'■ winds'in''-geostrophic'approxirhatlor' 

and the equation of the heat flux without considering the v< 

tical current. Charney obtained P<n&tS8on*s'equation for the 



- ■. t 

derivative of pressure at different levels. The resulting 

equation in the barotropic case was integrated according to 

the method of finite difference with the aid of electronic 

eq-uipraent. To integrate; the equation, Charney was fcrcad  t 

supplement artificial boundary conditions, pressure values 

and Laplac^Äß/ipressure as time functions at the boundary of 

the area« 

The baroclynie atmosphere sarople was examined in the an; 

lysis published by I.A. Kihe.l (1953). The author started w5J 

the equation of the vortex in geostrophical approximation a; 

with the equation of the heat influx without considering th'; 

■vertical current« I.A, Kibel integrated Pouasson's equation 

for the desired function ~-~ on surfaces p ~ const and ob- 
t 

tained the solution as follows: 

2w r1   
ä a    1  f / r,        bi 
-..«. » „— \ I F{r, <j> t x>)  In «=- rdrdf , 
H    " 2r J J      7  *    r      T      *t 

o o 

F(r, ft,  a)  - the known function of the fields of meteorologi -, 

cal elements in the entire atmosohere, --~ - the mean value 

of the desired value at level p up to the circumference of 

radius rn. Value 4~- with sufficiently large r (l.OOOkn! 1        <)t 1 
appears small and may be eliminated. Excluding the average 

value of function ?{rff f  p) under the integral symbol and 

integrating the function of influence —* I.A. Kibel ob- * / 
r * 

tained the prognostic formula 

6 
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3t 

M ■«. «..,„& 9 for ütirposea of simplification' it was assumed -that 

function fir», ^p) equals. F{r, ^ $p) in. regard to the examined 

■      M W  «fe A Jt *e*   & . 

. In this analysis %m  authors intended to obtain general 

.equations for pressure and temperature.-phanges and an equa- 

tion for the vertical'currents-which takes all basic factors 

of the baroclyaic atmosphere into account«, Compared' to' pre- 

vious analyses the complete Inclusion of'dynamic factors in 

the temperature changes appeals to be a. -hew factor« 

•'"'In the integration of the obtained differential'equations 

the authors found solutions which- were expressed by space 

integrals %£  determin&fce expression^/tdependfeis^ upon the dis- 

tribution of pressure fields and temperature in "space" äs 

well as tha congruent influence® functions« 

1.Formulation of'Problem 

.'In the study öf the dynamics'of pressure and temperature 

changes and the format ion of -vertical motion in. the baroclyn. 

atmosphere we used the system of hydrothermodynamic equation: 

in regard to atmospheric processes on a large scale« A chara'1 



teristic feature of this system which distinguishes it from 

conventional hydrodynamic equations} appears to be the exi- 

stence of the deflective force of the rotation of the earth 

in the equations'of motion. 

The local stuc*y of space regions with horizontal 'dimen- 

sions over several thousand kilometers permits us to consider 

the surface of the earth as a. level surface subject to the 

limitations of the region under study and the use of the rec 

tängular coordinate system in the initial equations* 

The analysis excludes regions in the immediate proximity 

of the equator (tyz  0-30°) because the nature of the motion 

shews furidaraental changes in these regions» 

The inital system of hydrodynamic equations is assumed 

as follows: 

Equations of Motion 

du 1   ^ p 1    -s <)u 

dt ?   *t f   1zr   H 
(1 

d if 

dt 
1   ^p      /    ,    l   *    ,   ** 

f    }y ?    dz       dz 

Equation of StatMtics 

5 P 

(1 

0 

Equation of Continuity 

lL ~ ICi i ill. im 
c? t       df        "d y        dz 

s 0, (; 
" / 



Equation of Heat Influx 

dT Ja        dP C 
dt g/        dtr " cp 

Equation of State 

P z   pRT» / 

. . The following symbols were used in the equations {1,1) ' 

u, v,w» components of velocity vector V to coordinate axis 

p '- pressure, &~  density? T « ait* temperature, Cs.  2a;cc<. 

a?» angular- velocity of earth rotation, 0 - supplement to ': 

cai latitude, u «< coefficient of turbulence, g - accelerat 

due to gravity, R - gas constant, £ - flux of heat per ma 

unit dependent upon radiation and-transition of water in at, 

rnosphere, from one phase state to the other, c » specific 

air under constant pressure, ' & ~ adiabatic temperature gra- 

dient.' 

Boundary conditions and initial data are indispensible 2 

the complete determination of the problem. 

As boundary conditions with the earth surface we take t 

transformation of the vertical velocity to aero 

w - 0  with z n 0 



and the conditions of the free surface at the upper limit of 

the atmosphere 

...... —> 0  with  ss --V03. u 
dt 

Elementary data are pressure fields and temperatures at t K 

p(x, y, s) and T(x, y, a). 

It is advisable to go over to the coordinate system xs, 

7\  P* f, where pressure p is assumed to be en independent 

variable; axes xl and y« are on the iscbaric surfaces. The r 

titude of the isobaric surfaces z is new considered a functo 

of coordinates x\  y», p and time tT, 

The transition from the elementary system of the coordi; 

■x, y, z, t to the new system z», y», p, t« is realized thrc 

the following changes: 

>    }    ^P  *    5     ?    3P  ^  A 
jx* " dx     dx  3p ' <?y' " ir       ^y Sp 

i       x i    >     i    2!.L 
2p ~      g/>   2z      ?tf        at       dt   <?p 

The result is that 

Pn 2 s 2 P ?Z <^P ^ Z 

3x ^x»        2y       ;   dyi        dt. oV 
C 

10 



In the new system the tim& derivative of any element has 

£allo\riiifT. .formt * 

,„,,  f v *>< 
«'10 

.1 <..- 1 w* 

Axr it? 

dp } 
aw «a.       «i»w: 

dt. c)p 

da 

V*   ■ v-.f 

value ir« vfc ©lays tte part of vertical velocity; this valu<- 

gives the posiftlorr o'£ ihs air unit ia regard to ths isobaric 

surface The transition from • vr to - is realised throu&'ri't'r 

correlation 

f- u 

»t. 
* u ■•••*• 

•«■•f 

Cl 

J.«J..'...,'.V-/P-/S» * 

(1*1} and.  U:o)  is the? new coordinate system as 

■:\l- ffU O'tf J'U 

"A i   i . 5 -y !' ,'} \J- ? J w 

9    ^    ■   ■-      <** 

(i, 

V c ^u 
^ ti r,,.,,  ,|,    -f w.„.j{,-'*~ » ««, g >.<•■«. «.   (u » g    *••» p-M ?•»   *-i. 

It* ,'••*'* j%/i /tfn /5vs   ■■'■■■■ eft <7P 

' Ms- '■■'- * g    ~- p/i« r~ 
C?TiJ'      fits o-p 



>a 1 
«,«. «* <n*      vw«* 

ö>P «/ 

o. 

(1.1 

In the system of the x\ y*, p,t» coordinate the equatl.. 

of continuity (l.J*) can be greatly simplified. To this end we 

use the equation of statics (1.3) and correlations (1.12) and 

(1.9).  Considering that 

./>. — i» *»*. «■•"   •»— / is™3Cjyjw, 

•>p    ^w    l    3    /   <)P       5p \      ^e 

J%      r)y        g    -*'a     \   ox <?yj        d? 

and 

^u   .   >v ,r-      ,, ■ ßu     >\      1    /    )   <>P £   > 

Jx     Jy   " ;V'x    .')y/       g[    Pzt?x        ö>z^y 

Au       >v \       />» }p     > >P\     1    f   } 2?  ,      i te 

:: f 
/>       }v  \     1     W   > ^P 

? 

we obtain the following form (1.4) 

N 

^    - }v   1^    0 (i 

l? 



The equation of heat influx (3..,55 is presented in the 

following manner if we take the new variables into account: 

. <^t*    ^x!    <JV ~.      &f    ■ cp 

aL 

!?2 

Finally, we express the limit conditions {!.?} and (1«Ö) 

with the new variables as followsJ 

■t" s 0   with  p = o daß) 

and 
s0 

'?~=- gf0 —-- with  P r Po . (1.19) 
' <2tf 

It can he easily recognized that the coordinate system 

selected by us,-permits the use of the hydrodynamic equations 

of the atmosphere in the same way as the equations for the in- 

compressible fluid» 

How after the problem of ascertainment of meteorological 

elements was formulated, we approach the problem of change t:- 

obtain equations suitable for physical conclusions*. 

1 ■* 



For this purpose we differentiate equation (1.13) by y» 

and equation (1.14) by x1; we subtract the first equation 

from the second. We assume that fv.    changes little in re- 

gard to the horizontal. Thus we obtain 

I     (>       >\       ■   d    fa       >)   ]       *    fa       >\ 
r)t' ^x«     ay»/ äx» ^x»     ^yy ^y' \^x'     <?y'/ 

/ I ! I i /*•"  . 1        _ ^ „_.. •*—*_«■>( «A, HUM Btt «M   M «* f *&»»*, 4*1 

#P <V ^x*     <*y'.' ^xf <*y* *p"   c>p 

^V       ')U 1 ' (1 2f 

Compared to other terms of the equation, components of 

type il  i.£ are generally small and can be disregarded. 

We insert the following designations: 

}v        <$u       $u   ^v       -^ 
c— - — ~X1}  -— *• •»— r div V . 

With the inclusion of new designations equation (1.20) take 

the following shape: 

U 



I        ,-■;' ■■ (1.21) 

l'   '^A:.   ?    l> <* '■ 

4^,/i 
«>■-   p p. ~ 

i. ,.(;„ äl --C- A.  . 
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^cording ■^Afi:^ 

■an f-.:urvi-:uy' <:.?:^ •&q«atj.cak to some extent as 

P 

(1.22 



To simplify the analysis we check the dynamics of atmos- 

pheric motions first without the inclusion of fractional for- 

ces. The latter will be discussed at a later stage of the ana 

lysis» 

For further simplification of equation (1.22) we assume 

that axis x{ '  shows east and axis yf north. Then the 

following correlation is obtained: 

it       A   i/  2 «sin 9^ 1     A      v  *" ~>   & «-*w  m  I J prw*   *■»  «•■wo«»*'»*» «»■**«»   a«*  /*"1 

3yJ <^y»    o.0    ' 

radius of globe. In the following, parameter ß  will 

always be considered constant, 

Taking into account all of the above conditions, equation 

(1*22) now takes the following form: 

n 3.a *«' SIM '.'■•V •i u W».«!I« f» 

6)4 fc* <^x.f 

(>!iil    p. jflff 
•f v «— fi^v » tr . (1.23! 

We put down the initial equations together with the limit con 

ditions as follows? 

d-o. £z       * 
<"'«   *■  —   g «.«.«» -£•  {Vj vl»2ii 
eft» " ^>x* 

16 
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) il -jL „ } A-   ,   .* ,       , )<r 

5xf         <)y*     .              <>p 
(1.2- 

^    fr    K-r     t 
£x         3y* "      gf           cp 

(1.2. 

I/O                              X         ■         ■■'■■■.    ■ 

ap       gf 
(1.     :;: 

p n jsRT   , \ JL * 

t*s 0     with :    p z 0, (1. 

>s0 
gf0 ~~- with p - p . J    <)t* ° 

(1, 

In the 'study of atmospheric motion for which the charact«' 

rising dimensions in regard to the horizontal are in the o'rd« 

of IjOOO kilometers, and the characteristic horizontal veloc5 
is • .. 

ties/10 sec/m,  the analysis of equations (1.24) and (1.25) 

..shows that these motions may be considered geostrophic motion 

u'« U f  u* 

V a V f   V* 
(1. 

17 



where . 

- &i>  component of geostrophic winds, u*» v* are small supple« 

meriting corrections. 

TM  analysis of tho expression for the vortex 

g     £v* ^u* 
Shz  n- As f -— - -— ». 

where 

<>x'2 ^y'Z 

shows that value -r-Aas I.e. the geostrophic approximation for 

" the vortia'ty includes the main part of IV. Vbrt»"t.'ty, 

V/e use the geostrophic approximation for the horizontal com- 

ponent of velocity y. and v in equations (1.26) and (1.27); ex-* 
P 

cluding\frora (1,28) with (1.29) ve obtain the following equa- 

tions: 

£t 
- f ~~~ («,A z) + $—  e  — r- , 
'    t r ^Xf   g *p 

(1.34) 

&T   g £   R(£. -/) T 

dt* t cn  "  g   p   . 

18 



J 2    R  T 

<?P    g  p 

vA,B} — —— •» «»»»«« *» •.—«. ...... 
^x1 3y\      3y» ^xT 

Together with limit conditions (1.30) and (1.31) and elemen- 

tary data this will suffice to determine future pressure field; 

temperature and vertical currents. 

Today the ascertainment of the general solution of the non* 

linear system for the differential equations (1.34) to (1.36) 

meets difficulties which cannot be overcome. We have only take; 

up the problem to ascertain the first derivatives <^2 , <¥L 
<»t *  Jt 

and function ; according to the given distribution of the pre,? 

sure fields and the temperature. 

2<L-gcuation for Pressure Change 

We record the equation system (1.34) to (1.36) in the fol- 

lowing manner: 

<?£3 •  g ,    v    >   /2 W  1 
f   (2|A2) f * . . i    ^ {2tl) 

<?t   t.       ^x  pg dj. 

1 T Index (') in the coordinates x, y, t is left out. 

19 



'}f Z, /*- •fl t /v 

■ ht 
-.«  (T,  z) .«,»««, ft 

^ /« * itC, i 

/    ' PR f 

^            AD£           «M> 

g f. H 
P    "'    \J!' ft        a { 

* 12., . 

where   "fs «~-    and-   P   the mean "Dressure on the surface of 
' '. p *' :. 

t;.lie earth which was assxum&ci with 1,000 millibar« 

Si 
2 H2 T{&. -y) 

M»*«iiii*«!»» w« aw. <wn «■*» «:■ 

ST   I   *■* o v 

jjfif-» £t'f 
A 

We assume'that -parameter mA changes'to a very small ex- 

tent . . ■ _ .-.._;-■ ,,„..- v ;-.'/. compared to the re- 

lati^e changes with the altitude of vertical velocity.t"" * 

Prom equation (2*2) we obtain the derivative ;of temperatt 
At' 
O *■ 

' (}   t 
through the equation of statics» Thus we obtain: 

tr .* > JJz\ g f m2 l 2 

«r~m fj       itff- 4Twc     j        e«-        an, nift set .»}     » sic an- «w      «i ai       «,- *rn -at «Jw w« 

■*■» V^t/ / 
P PR f 

{2 B 4 

Both parts; of the equation are multiplied by {* . -Then we dif- 

ferentiate by 7% Thus we obtain? 

TO =**   «* «v» iwi.  /        .".' •• *•.,' Hk'j  f   *a fett. 

R «)£ . ,^f \^t/ 
3 

«ft*  wa a*. «« 

r H 
i 

I c p PR*" 7{e 



fr- 
Excluding derivative ~~~ from equations (2»1) and (2.5) 

we obtain 

'\ 

k^k^iii ^x{x'y^'' (2.6. 

where 

r„. 
f-j {x, ■>*, £) -r - m' 2? {s, A z) f ^ 

■äz 

'X 
( 

. . {T, z)  f ~~ (2*7 

la the cylindrical coordinate system (t\f,^)  where 

y x + y-   ,   ^/^ p 
r j» „«,.,„-.......„„ ? <p » «sj^fc&'e angle and Cz  — "the reduced 

"iß'      '. "  P ' 

altitudej equation (2,6) is changed in the following manner; 

\c)C    <5>£  r 5r  <)r r*  df2J   'dt 
i f.Cr^.Ch  (2.f 

To formulate the problem completely, equation■(2.g) shouj 
be supplemented by limit conditions«, 

As the first limit condition we assume the relation direc 

J.y. resulting froir. the heat influx equation (2.2') on the surf: 

is</el of IjOOO .millibar^on the basis of condition (1.31) as 

follows: 

3Tn  6 ,_    .   Co . . ^ zo 

i 
-2 r T(T0, Zo) * ±2 + {^r) 

H 
(2, 

21 



/g m 5 z \ 
Considering that    T_ s - / ~ f—- . we put   (2.9) 

into the following shape: 

f 8     1 
- - A(r, j^,  1) 

wnera 

Mr,ft  1) » - 

R(r« - * 

~  <T«,   O   f  - "0>   "0' 

0,1, 
g 

(2. 

The second limit condition is obtained from the heat in- 

flux equation for the upper limit of the atmosphere in re£>- 

to the '.v.olume unit of the air: 

( ■ *A 
lira  ilCpp T~f 
.?•#> \->    dtj 

lim cpf y  (?, z) + £' f !L.JLJ1 rf, (2, 
g 

r* - influx of heat at volume unit. 

On the basis of (1,30) we hcve 

lim 
C*o g 

c 0. 

Moreover, the quantity of heat £» flowing at the volurc-: 

unit, is very small in the upper atmospheric layer. Therefo:. 

22 



lim g  - 0, 

Finally, lim f>u • lim ßv g 0 and the derivatives of tern- 

peratuTö '««— and-— are :" ■ . ..... L \v the isobaric surfaces 

in regard to the large-scale motions.; .as a result 

r     8    1 lim c Ö — (Tt z)\   - 0. 
5*o L P}    L J 

In this way we obtain the relation 

lim |c_p —- |s 0. .(2.14 
C*> \ p;   at 

Condition (2*14) can be put down in the following satis- 

factory manner if we take (2.3) into account: 

-rÄ „«» {--.-]    -j 0. (2.1C 

In. this manner the work done for the ascertainment of the 

first derivatives according to time led from the altitude of 

isobaric surfaces to the integration of the inhomogeneous, d: 

ferantial equation of the second order (2.g) under limit con- 

ditions (2.10) and (2.15). 

2? 



Now we proceed to the problem (2.3), (2.1G),(2.15). We 

assume that functions fx(r, f , f) and A(r,<f , 1) can be pre« 

sented in the following form: 

00        CO 

ns-co 

co      oo 

A(r, f, 1)  s Re Z~i   <*in? l)    Vf )Jntrf>  f df> 

(2.16 

where 

n 

On 

2?r oo 

riW ICiT.1** «j-infdf   I    fi(r\f ,{)Jn(fr*)r'dr', 

o 

r 
(2.1 

oo 

V 

Here J,,{y.)  is Bessel's function of the n-order,  and the 

g;>T,boI Be raeans that only the (essVntialj parts of the corre- 

sponding Bxpression^ ar<a examined. 

W Xoo'k for the solution of the problem in the following 

F-'v.^n^r i 

oo 00 

(2,1 

n«~co o 
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We subject (2.1Ö) and (2.16) under limit conditions (2.10) 

and (2.15) in equation (2.6). We combine the terms containing 

€
in$ Jn{rf)  products with the same n» and adapt them to 

zero. We use correlation 

. r $r  <^r      • r  '. ■      ' 

• As a result we obtain the following equation and the limit 

conditions for a new'unknown function Sn(f, f):as follows: 

^c 

s> 

~N 

\ 

~b +«q Sn| .  - - Gn(p), (2.20) J(   J    K-1 

: The solution of equation (2.19) is composed of the general 

solution of the hoaiogsneous aquation 

o   ®    n   «J  n   ? 
?** " ««*«•'•»*= 4 2( «i»- w n S„ ~ 0 (2.22/ 
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and of the specific solution of inhomogerious equation (2,19). 

^be general solution of homogenous equation (2.22) has the 

foil Gyring  form: 

■n ss«f .f > *cnxrxf cn2; *,       (2.2; 

1       T /I o 1        .j. /1 ^ 
i?s  j. -, «-, a■ / — 4 p    ,    y0 s - — - [/- - p*  , (2, 

C„i   and CL-, - constant quality depending upon p  . 

The particular solution S* { f> , ()  of the inhomogenous < 

tion (2.19) vdll be found through the reothod of variation c: 

constants. 

As it is known functions B^ and Dn2 are determined fror, 

following equation system: 

T,5 /'I / n* ^y2  n      \ :'ftl£  >* Dn2 4   s °» 

I 

« r^'l"1 . , r.» r>vf2-l  Fn 

(2, 

*lDnl *    * *2Dn2 S    - 5 - 5:5- , , 
1 
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.nt     ni 

As a result of the solution.of system {2,26} we obtain: 

T)\   . -•-««-, F f*^   Bs„ - - —.--«- P  f'^i     (2 27) 

We integrate (2,2?} at the limits from aero to f . The ai 

bitrarily chosen integration constants .are excluded and we oh 

c If 

>«x «y2 
o 

1    f 
Dn2< f » O s ~ ——— ( F ( P , -A } -q 1 d* . 

Vl - »2    } " 
o ■. ■ 

. 0onsequentlys  the particular solution of the inhomogenous 

qyration has.'the following' form: 

«I -  ™-~    f  Fn{f ,7> [fl   ^  - fi >jVl] d>j .   (2.2 
© 

In this manner we obtain the desired general solution of equ? 

tion (2.19) 
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1   t 
V t. f) - cm f1 + e, r * * ----- K< f > 1 > 

fw 

-1-   ^   b 

I?fi'l v.^2      ^''2    '0 !    . /o --■ 

C ., and 0 ^ are obtained fro;n the ■'limit conditions (2.20) 

(2*2:0. The result of condition (2,21) 3s that 

cn2 r o.; U.;- 

Value Cr.i  can be determined from condition (2,20) 

x HI   * 

o 
JL 

,_.-:     |   Vfl»[^-1 "J^'-V/» 
"2 o 

— \ *"„(P.» ) J3- - »^ d» 

c 
(a.: 

o 

On. the basis of (2.30) and (2.31) in (2.29) we obtain 
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1 
Snffr> -"KIT 1 VM>PJ v*s

2r 
xf 

1-*2 y 
o 

1 

{2, 

t'/J'J^J'O 
:.*'^/1V 

c   [1  with »^»C»     (® with r^4f, 
<h » o - 

/0 with "*!>(*        *    jl with >!>'/** 

Novr'v?- *aJce (2*32} as a basis fbr*-l'?'.10).. We obtain: 

a»   /' 1 

Re 
'$% 

n«-oo "bio l w 

"""^^T^.^"?r':'"" 

G   { ? ) fA  j '     "■'" 
•   ...  ««.-.i**....,..,..,  --«y   3Jvf S) f <*/*■ » -v r     " (2.3. 

/■/.    »>   «sJ J.       '■) V { ! 

■■■•■.-. * : -    :..     ';•;     ',   ,'• ;' »■',.'    .1;      Äv„ii,äs. < 

v/hjtre    p ssV— f p » f   -. 

V/e also take the values of ^n(/> » *? ) and G^*f ) from (2.1 

as a basis for (2.33)-and change the sequencelb£  integration- 
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The result is as follows: 

CO CD 

^z        x  p   ST A^J- 

= -00 o 

6  i 
Z"    -in*» A 

If JJfitr'.y.lf) M|n: 

o o 

(r,f , r»,^)dj^ + A(r»,f, l)M*M(r,f , r»)j  r»tydr»,       C 

where 
CO 

o 

00 

if»    ' <PC -  = +  U. p 1     0 

M*(n)(r, ?, r») s -- 
*T 

Jn(rf )J(r'; ) 

<-SfF 

If we take the vertical line crossing the zero of the cc 

•. -dinate system (r : O)1 as a testing point, we get    n^O 

v\.l values if Jn(0) - 0 with    n *4 0    and Jo(0) - 1 are take. 

into account. 

H-[n) s 0      and H*<n>  . 0 

1 We can always combine the vertical axis of the coordinate 
the studied vertical* 
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U) H *°* differ from sero. Only functions    li,        and 

In this manner».the subtotal  (2,34)  is transformed to a 

composed"solution, with'r s 0, 

Z   ! 
GO   1 

111 rs' 

CD 

= - |    I   p3 tr', ^ }M3 ( f , r*, /( )r»d J| dr* 

o    o 

j    A(r», 1)M*£(\ r«)r»dr 

o 

hir'^) .1 / 
^>r 

2 it 
{    f^r^fth)^ 

27f 
1      /" I 

A(r', 1} s -—    I A(r«, 0% D# ,     5 
2r     j I 

o / 

CO 
J0(rf f) 

»* >      ^ „ i ^ u 
2       ' o 

(2.3? 

(.2.38 

(2.39 

*    A 

Jo{rVJ 

{2.40 
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The result of {2.37) is that the pressure change at the 

points which are situated on any vertical line» is determine 

by the» mean value of the exact functions of the pressure a: 

temperature fields, in the circumferences-on the isobaric 

surfaces> .the center being on the examined vertical. 

This result can be obtained through a simpler mathemati- 

cal process. We integrate equation (2.8) with f ,,from zero 

to 2/T . VJe find the solution for the deriv atives —- , ob- 

tained with the circumference of radius r ; thus we assume 

that in the obtained solution r - 0„ 

In the following this method will be applied for the ob 

18indent of the solution for «y^  and V . 

Now we concentrate on the fact that according to (2,7) 

the "thermal coefficients" -?-(T, s) + --- enter the soluf i Op 

(2,37) in a very complicated manner as 

> 

where- f •,    ~i    \ 

hir\ftti ) s ^ |--(z,4 .z) + ^*T~ 

R    fg .,"  f  1 
ldr\f}>] ) = —  I— (T,  a)  f ---! ♦ 

' g    [> CPJ 

(2, 
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To simplify solution (2*37) we try to find the function 

of influence referring directly to A{r\^)^For this "purposf 

we use expression - y- l|A(rr,/{ ) instead of Fi(r?, /| ) ir 

(2,37). We integrate in stages and obtain: 

1 

I  -,L -r| A{r»,*) )t\('^ *  r»,»j )d»| « A(r», 1)M*({ , r«) = 

1  1 
> 

s"^A(r',Jj )Mi(r , r«t)| )  - I  A(r*,^ hj j-  M^ { , r», Jj)tf 

o  o 

1 
3 

A(r», l)M*(£Vr*) s-l A(r«,j| )>j y~ Mx( f , r»,^)d»| 

A(r«,»| )M2(f , r»,^ )drj , (2. 

where 

^ 
«2(f. *'.?> S^'J~«l«H^,^> +   \ s1 

 M3(C, r«,^ ) *«*Wf*(?'j|, r«>, 

CO 

N(ff r« ,,,.^5^^.*,^.,^ ) (2.. 

Jo(r'f ) /°df * J 
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Considering (2.41) and (2.42) we, finally, present the 

sol'at ion in the following form: 

1    oo  2r," 
Iz        1    (    (   if 

?t     2?r j    ) 

g •     2g 
— (a, A  z) i p— Mx( ( , rf >] )rd_<pdrd^ •} 

o    o    o 

i co /r" 
1     7 /• 7    R   (g 

2«-   j ) j      g 
0 0 0 

f g f 1 » 
j-.~(Ts 2) t —-j K2(f , r, * Jrd^drd^ * 

5P j (2.^ 

The influence function M3 (f , r?y? ) and M2( § , r, a ) is 

characterised "by the dependence area of the solution of the 

meteorological element fields in the surrounding space, . 

To calculate functions of M/, K^ and M« it is•appropriat 

to make certain changes in (2.39), (2.41) and (2.43). The 

values ^i)F, '4-| F end /•>-] F are presented as instructive 
v » 

functions of type t     * 

A «V? ^Wn , j-2^ s t -pm f , f.L)F „Ä-i** iJ 

With the inequalities 

the functions In -r- , In ~— and In -7— are always pen 

tive. 
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As a result function H3 ( (  , r, :, ) is cor..erted to the 

algebraic sumtotal of three integrals of type (4): 

00 

,u.r>.( e-^--°-LlÜ 
- -Win2— f- r2 

y In2 i. -f rs 

(2,45) 

where u sV""* * f » an<ä x takes vaiue f>7 * 4*» ~*   • 

If we use the symbols of (2*45), function Mj{(, rs ?| ) 

is presented in the following manner: 

M3(?. *vi) * jj« [^/(f»r) + *2•"(■$••r) -«^fv r)J * 
1 r, 

;1 ~    K"   " ' ' (2.46) 

To calculate K*(x , r) we use the transformation 

03 X fco 
•«.    1 J0(r/>> „ -*  {     W<-   4     e)    j   /   v   uVr/} 

2  ~ 

dA, 

Considering (2.45) we obtain: 

x 

H*( X . r) « x^ ( ^ ** ^i«~ d\ r 

„.„... t (_...) z X1" 2* <f <A» r) d\. (2.47) 
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We introduce 

or ( X i r) 
"***"^tz"m"" ~ ^f & » *"')• (2.4 

v' x 

As a result v?e can present function M|{ ^ , r, v? } through 

the following expression: 

Mi(f , r,|) e -1  jLl- u /f,    r) f 4" ü ff' r) f U(f>/ >r) 

f |-- ~<*j (fn )~A  (   x1*"1!! (x , r)dz , (2.49 

■    ' o 

f « the level for which    ~«« 4_s determined,    r,)f    - the Vari- 
ed t> I 

able quantities of integration* 

To calculate function   N( f ,r, » } we use the transformatJ. 

CO ■; CO 

\ x        "'   30srf ^/df « V* 1"   I   Jt"'-2—•«- pdf>       (2.50 
) '   / fa    ) u       '   ' 
o O ' 

and then also correlations  (2*45) and (2.4S). Then   N(£" ,r, pi 

becomes the sumtotal of three integrals of type 

X  (x, r)  B   |X        *   J0(rp ) pdp sV* ™- — s 

0 

1 f 1   In «»«  12 «f x. y In2 ^~ * r2/ 
r.»l>'i*i<l«i«Mnm«»fKK>M> »*■ <fe"l *•* *»l * 

p     1 o 
In    —» i r 

U(x t r)  . (2, 



Taking note of (2.46), (2.4S),and (2.51) function M2 can 

now be described in the following manner: 

M2 
tr s       X /$2 T  ft     J. ii I  [2Lt r) - I«•»», r)f  ♦ (f , r, »j ) s -- jy I  ^-. 9 - "f    x  (.( » 7 ' (»    ^ 

+ L (ii II ß., r)+ ~S o(i,r). U(f.,,r)] 4*K*(fy r).  (2.52 

' . We note particularly that with f « 1, the influence func- 

tion'M-j^ and M2 has a usual form as follows: 

M, (1, r,i| ) - M* (*[, r), (2*5- 
x 

* {« . r).        (2*54) 
«2 (1, rtrj  5 s «" I h » r) + *M ()f * r) 

Functions U ( X , r), I <* , r), rf I* , r) and the fields 

of functions Mx (? , r^ ) and M2 (C ,' r, ^ ) for different 

cutting through the vertical plane, are graphically shown in 

Fig. 1 - 12. 

VJe will analyse the reaction of these functions with dif- 

ferent values of the independent variables X, r, 1'^ 

Function U U , r) (Fig. D is IT' (1, r) • - e 2  with 

^- 1, and U (0, r) s 0 with z* 0; with a small X  the functi 

.■■"   .: :  i *      x 

tends toward zero such as -—y  . With    rfO    U ( * , 0)»—- 
.   n jf 
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Ae " 2    . The function shows its characteristic trait at pc\ 
. r  . 

with growing r and a fixed value x function U( x , r) decrease 

in a regular manner; with r --'- oo it tends toward aero, as 

r  . ■ * 

( x ■ 1, r s 0) • 

With -xs 1 and r s^ 0 function I (X , r) (Fig. 2) equals 

aero; withXs 0  I (0, r) - Oj with a small x   the function 

1 
tends toward sero, as ——y . With r « 0 I {x , 0) r 

2 «f In «vr 
—««««.«jt-. ,. With growing r and a fixed value x function1 

21rr* A 

I (x , r) decreases in a regular manner; with r -> oo it 

1  - X 
tends toward zero, as -—e  2 . The function is character- 

.  2r2 

istic at point -(x* 1, r s 0). 

The characteristics of function M*(-X, r ) (Fig. 3) are 

similar to function U (X , r). Values M*(x , r) are 1.5 to 

two times higher than values Ü (x , r). 

With xts  0 M*(0, r) - 0; with r -> CD M*(X , r) appear; 

1  - f- 
as — e  4 (Fig. 4). The tendency of the function toward 

r 
■ ' .    ' ' r    ■    t-, J ; •*   .   .  . 

zero is governed by the rule ----»- . 

Function Mx (1, r,/| ) Fig. 5) describes the integral act 

er tt% 

.of "the dynamic factors" -~(z,Az) + ß ™ in regard to the 

pressure change at the point on the earth's surface. The act 

distance R sYm2Äj750 kra corresponds to the relative length 
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Attention raust be given to the vast expansion of the action 

area of the dynamic factors in horizontal direction» For 

better illustration and analysis of vanishing of action on 

the part of the dynamic factors with increasing r values, 

we will show the influence of rl^ (1, r,y[  ), in a graphical 

manner, describing the importance of average values of dyna- 

mic factors ■-& (z.iaS t £>«4a relative to circumferences of 

radius' r (Fig. 6). We see that function rii^  vanishes very 

slowly with increasing r. With r "-» OD TMJCIJ r,>| ) decreas» 

■ r «4, .a^j. 

as e  to . 

In actual practice, the influence of dynamic factors on 

the change of surface pressure will always'be limited by 

radius R of the 2,000 km order, because the average values o; 

g $z 
— (2, &z) f B——    relative to the circumferences 2,000 - 

3,000 km are actually small« 

The limited effect on the change of surface pressure and 

dynamic factors in the upper layers, can be seen in a cleare; 

manner in Pig. 6. Vlith an equal distribution of the dynamic 

factors according to altitude, their effect from the surface 

limited by radius r ,s 1 (300 millibar) is reduced twofold 

compared to the effect of these factors from the 900 millibf, 

surface which is limited by the same radius. 
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Function U£  (1, r,^ ) (Fig. 7) gives an idea of the effe< 

of thermal factors -S (T, 2) f £    or, to be more precise, 

of the effect of local heat flux in the atmosphere and the' 

change of surface pressure. The negative values of function 

M2 (1, r,» ) in the surrounding area of the atmosphere show 

that at any level of the atmosphere in this area the local 

heat flux causes a pressure drop at the earthy heat emission 
px emu-fig" 

fiffid w$^p#a?£;W» increases. 

4-   r 

Fig. 5. Field of Function Fig. 6. Field of Function 
rMx (i, r,^ ) 

Compared to the action area of dynamic factors, the regi 

of activity of thermal factors appears to be more limited. 

Indeed, the maximum value of function M2 (1, r,-J[') along the 

vertical line with r = 1 is more than twenty times smaller 

than the maximum value of Mg (1, r, -*j )  along the verical lir 
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■:■■■.! 

■t 

with r s 0,2, during the same period in which, for instance, 

the function of influence Mj (1, r,n )  decreases 4 times. 

The difference between the areas öf influence of thermic 

and dynamic factors can be recognized by the/symptotic re- 

action of functions M2 (ls r,a } and M-j_ (1, r, ?j )» 

Function 1 (> , r) which appears as the. main part of function 

Mg (1, r, /| ), tends toward zero, with higher r values, as 
■ ■     : r 

—s e    » but M^ (1, r,« ) shows the same reaction as 

r 

r 

We also want to show function r M2 (1, r,?i ) which represent 

the summary influence of thermal factors on the circumference 

of radius r,. as well as the change of surface pressure, The 

analysis of function . r M2 (13 v,n )  shows that the influence 

of thermal factors in the upper layers of the atmosphere on 

the change of surface pressure, is-usually very small« Inasmuc 

as the average values of the thermal factors -f* (*?» 2)1---. on 

circumference r with a sufficiently high r, can be considered 

important only in the case of greater thermobarometric dis- 

turbances in the atmosphere. On the basis of the graph shown 

in Fig. Ö it can be maintained that the relatively important 

influence of thermic factors of the upper layers on the chang 

of surface pressure can exist only In the case of great therm 

barometric disturbances. 
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Fig. Ö. Field of Function 
rM2 {1, v,n ) 

Kow we 'examine the nature of the functions of influence 

of Pi-j (f ,v r, » ) and. M2 (f , r,>| ) with £<<£ 1, i.e. the effec 

of the above mentioned dynamic and thermic factors on the 

change of pressure at a certain level above the surface of th 

fig..  9 and 10 show functions M^ (0,7, r,*j ) and M^tO.S, 

r, »l K In  principle, they do not differ from functions which 

sr<s similar to them, i.e. from functions for C s  ls which 

V$SNJ studied above. The difference is only that the area of 

:»n&TLm'0M values of the function differed here from levels 

£ * 0.7 and  £a 0»5» that is to say from levels of examined 

joints« . „ 
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Fig'. 9. Field of Function Fig.,10. Field of Function 
M1 ( S , r,jy ) with (r 0.5 

A completely different type is function F^ (C > r» 'O 

with £ < 1 compared to M2 (1, r, >j )• Fig. 11 and 12 show 

functions M2 (0.7, r,y| } and M2 (0.5, r, *j ). Vie can see tha' 

the local flux of heat in the upper part of the atmosphere 

relative'to level £ causes a drop of temperature'; on the 

other hand, the heat flux in the lower part relative to lev. 

£ leads to a rise in temperature. The   *    of heat at 

different levels C of the atmosphere causes the reverse 

effect.    . 

At a certain level £"' the influences of thermic factor, 

of the upper and lower layers on the pressure change compen 

sate each other so that the pressure change depends only 

upon the dynamic factors. This level will be called "mean 

level" of the atmosphere. 



■- - 4 --«k 

H 

to e%    04-    o.b     0$ I 
-Fig. 11. Field of Function 
M2 (f , r,*j ) with f s 0,7 

Fig. 12. Field of Function 
M2 (£ , r,7| ) with C s 0.5 

Theoretically, the existence of such a level was alread 

mentioned in I.A. Kibel's (2) analysis. In the first place 

the isobaric field at this level, as it was shown by I.A. 

Kibel, determines the motion of barometric and thermal dis- 

turbances in the vicinity of the earth. However, empirical! 

the existence .of the steering current was shown already at 

an earlier date by S.I. Troitzky (5). 

In each concrete synoptic situation function M2 U , r, 

permits us to determine the position of such a level. In ge 

ral, this level does not remain constant neither relative t 

the vast spaces nor the time, because in each practical ca 

its position will be dependent upon the distribution of 

heat flux E « cp -| (T, a) +£. 
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If v;e admit that the local heat flux is constant relative 

to the vertical line along the entire thickness of the atmo- 

sphere, the mean level, in this case, would be somewhere be- 

tween the surfaces of 700 and 500 millibar. 

;  The position of the mean level remains dependent upon the 

values of thermic and barometric distribution in the atmo- 

sphere. With increasing r values the negative values of func- 

tion rM2 {§ ,-, rrA )  in area ..•«'*£■£ disappear. at a slower rate 

than the positive values in area n<C f j the conclusion is 

that with the same relative distribution of the heat flux 

E { r, f * %)  along the vertical line, the mean level will be 

higher in the case of great disturbances than in the case of 

small disturbances. 

■'With f -4 0 solution (2.44) for ~*r is converted to the 

following expression: 

oo 2/T" 
)  2 

7t 
1  ( ( r,         ?z\        ü(l,r) 

- ■  \ \ m2    -£(z,Az-) -k-    -——-• rdf dr • 
f = 0 27T     ) ) li                     "^UssO  2     ' 

0 0 

co 2 
1 f   (   . R Tg rl    U»(l, r) 

1 \ I  — /— (T, z) +  -£-     —-— rdfdr, (2.! 
:■*#  )   )     g Li / cpJ < s0   4  ■•■■.f 

o o y-i 

where 

U«(l, r) a U(i,r) - 21(1, r), 
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.i»e. 

/ü (1, r) with r >0 

£af R 
l»M<Nf I or A -  «~ 
*xj g 

UH1, r) =J (2,5" 
)  0   with r a 0. 

The functions of influence M-^ (£ , r,rf ) and M2( f , rtyi ) 

characterize the region of dependence of the studied value 

JLl at the respective point upon the environmental setting 
tft 
of the fields of meteorological elementsj these functions ca; 

also bo interpreted on the basis of the principle of revers- 

a'feility in the following manner. '': 

At a. certain point of space (X, y, ( ) we place a single 

'-'source of «ubstance™. 

,.. f'g 
« »^ j-~ ■■■(?,, AB) f 0 

Accordingly, function M^ (>j , r, f ) or M2 (>'| , r, { ) 

Wv.m:i  ths 'change of pressure in the surrounding space throu/ 

the* influence of this source. The positive source of the dy» 

nimic  substance B at the level ..'results in an increase of pre« 

sure in the surrounding area at all levels, reflected, by spa* 

fuses A on. %(>( » r,(f ). It can be easily seen that function 

% { q t r, { } is identical with M1 (£ , r, ^ )• 

The single "thermal source An at level C results in de- 

är^a&ed pressure.in the upper part of the atmosphere accord- 

ing to function M^ ( n , r,f ) as far as level 1 is conceri 

>,.* 



as -well as a rise of pressure in the lower part of the at- 

mosphere. Negative sources of the above mentioned dynamic 

and thermic substances cause, in an analogous manner, a re- 

verse tendency. , ■ '   . 

Such an interpretation of the influence function gives 

us a clear idea of the radius of influence of thermic-barome 

trie disturbances in the atmosphere on the change of pros sin- 

changes in neighboring regions. 

An analogous interpretation will also be given by the so 

lutions for «- and f » which will be described in the fol- 
rf t 

lowing paragraphs. 

3, Equations for Temperature Changes. 

The equations for temperature changes at different level; 

will be obtained through the separation from the equation 

system (2.1) - (2.3) of the vertical velocity rand deriva- 

tive 4i • r) t 
To this end we differentiate (2.1) with f . We obtain: 

"g ^z 
-:- '(a, A z) -+ ß --- 

2 2 
J-JL.. 

The equation of states (2.3) results as follows:      (3.} 
:    r A ^\     R 1 ■■:-?*■   v H - 

H   \ ,)tj.     g r    <?t 
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7 iz>Az) * t& 
R I 

g C 
~ (T, Ziz) + --(«,/> T) 

(3.3 

We incorporate (3.2) and (3.3) into (3.1) and obtain: 

}T g g 2TJ I fv 
r * *   ci 

/r 
(3.4 

To exclude --«* from (3.4) we dissolve the equation in 

regard to r and differentiate same twice with £ assuming, 

as previously, that parameter m2 changes according to alti- 

tude. We obtain: 

2 } C^+^l 7t - fe'  3f 
1-7-CT, >) + 

t       c 
.6. 
P 

*2 I2 ft 
PR ?f2 

(3.5 

Now we multiply (3.4) with m2  and subtract from (3.5). 

The result is as follows: 

hth'^T.*'**'*'**- (3.' 
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f2 U.y,?)S5?-f 5J- 4 (T, i) f ^~- 

(3.7) 

In regard to the nature of limit conditions for equation 

(3.6) we assume the following (see conditions (2.9) and (2.14 

3T 

"5tic«i 
}T 

9t! <=< 

s Qn (i, y),. 

= o, 

(3.Ö) 

Q0< 
x » y) = T <To» zo) + — • (3.9) 

^2 
The term (& - V) --2 contained in QQ (X-, y) is disregar 

dt 
1 

ed in this analysis because this term is of a higher order . 

In view of the fact that equation (3.6) has a structure 

which is analogous to the structure of equation (2.6) for «w 

.£*< 1 The exclusion of term (^ -Y) -?rS contained in Q(x , y), 

is not of basic nature. It could also be retained as ^ can 

be determined according to formula (2.44) in the previous pa 

ragraph. 
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the solution for |-J as well as for 4r win be determined 
0 «* d t 

by the mean value of exact functions on the peripheries with 

the center being at the examined point. Therefore, we apply 

a simpler mathematical method for the solution of equation 

(3.6). The possibility of applying this method was already 

mentioned above.  - 

We note equation (3.6) in the cylindrical coordinate sy- 
122 

stem (r,# , O, r = ~   m*— » ? ~ polar an£le» f = p " 
mentioned altitude. We integrate this equation with f from 

zero to 2rr. 

The result is as follows: 

o b (3.1 

• >T 
These are values — and f, ascertained on the circumference 

of radius r . 

The limit conditions (3.8) are reflected in the following 
: manner:: 
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2 t f si 
= <Ur), 

(3.1? 

at 
s 0. 

The solution for will be tried in the form of the *oune* 
St  ■■ 

Bessei integral 

Tt 

CO 

S(f ,f )J0(r;)fdf (3.13 

We assume that function f2(r,f } and Q0(r) can be present 

ed in the form of the Fourie-Bessel integral: 

CD CO 

( 
f2(r,r)=   J0(rf)f&f    J f2 <r',.f >J0(pr«) r'dr«. 

(3.1; 

CO CO 

Q0 (r) « I J0(rf )f d^ \ Q0(r».)J0(f r»}r«dr« 

We take (3.13) and (3.14) as a basis for equation (3.10) and 

limit conditions (3.12) and use the known correlation 
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i > ( H0ifr) 
«... «w  JX» «.....«.«..». 

r <^r J   dr -/Jo(fr)» 

In this manner we obtain the following equation and limit co 

ditions for S( o,f): 

2  2 ^s   9 
(3.1 

-£sl I- 
r G2 (p), 

r 0, 
(3.1 

P2 (^,f) ■'( f2(r»,£) J0(^r»)r»dr*,' 

■02(f)- Q0(rV)J0((5rM r'dr'. 

(3.1 

In view of the fact that equation (3.15), as far as its 

structure is concerned, is analogous to equation'(2«'19) exa- 

mined in the last paragraph, the general solution of equatio 

(3.15) will have a form which is analogous to (2.29). 

■■■ £ "■ 

X" 2 o (3.1 

o. 



yi»- T *Vx *'a'   »*s~lmV?*f 

We take arbitrarily constant quantities C^ and C^ from th 

limit conditions and obtain: 

1 

S{ "f,-^w^(j)N;'fi)Mti,f. "i 

(3.19 

fsI^/ 

We take (3.19) and (3.13) as a basis and replace F2*f »T 

and G (p) according to formula (3.17). If we also change the 

order of integration we obtain: 

1  00 

o o 

00 
1 .   f *l 

1 o w * 
. Sa(i)r -'fi>'l i---'--'s--4 r.-., t 

00 CO 

f    V   Q0 (rf)f™     j   fJotrfJ^'fifdfl   r'dr» 
0 ' v        '■■"• o 

.   '('3. 
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Now we assume that in (3.20) r ~ 0. As a result we obtain 

the solution for ™ at the points which are located at varic 
levels C *  along the coordinate axis. 

1  CD CO 

---*-(. I ^(r^* )M3((
,
| r*,>j )r*dr»d,j +  ( Q0(r») 

0 0 o 

I(f , r»)r«dr»,   (3.2. 

co 

J0(r*p) 

and • 
09     1 

I (T , r») s   £r  2 J0'ir'f  ) ^ <Y       (3.2; 
o 

These are functions which had already been used previously 

We take f^r«,^ ) from (3.11) and (3.7) as a basis for 

(3.21) and partially integrate thermic factor &(T, z) +  ~£« 
L cp 

Thus we can finally give a description of solution (3.21) for 

•4-1 as follows  : ','       '."'-';'■' ;; 

Derivative *-c can be directly obtained from solution (2.'i 

for j| by differentiating with <" and utilizing correlation 
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ca   2fr 
3?      l   f    r r 

<?t    2ir 
O        0 

T (To' V  f. -|2I  X (^» r>rd?dr + 

I    co   2p- 
^ 7 r r  .5 fs 

o    o 

f       )       g /'"I 
>j —.-    -,-(T,  2)  j- ~c-~    M^(f ,r,n ) rd <f drdn 4 

.1 
4  

2^ 

1    co   2if 

in 
<^T ft r* JV  i      I 

rdf drdA , f drdfi (3.2, 

(continued) 

Than we obtain; 

co   2/T 

3T ™. .f.ri    /?2) 

PT        1 
«•» M« mm       «na'   '  <WMt MI 

?t " 2r 

. ..1 00  2/r - 

Q0(r>«p)G1(f,r)rdfdr *  (  f(r,f,y) 

0    o o o    0 

gm 

R 

G2(f ,r,/?)rd^drd w , 

g Pal        }        fg £ 

>? 
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The functions of influence M^ and Y%  are expressed by 

functions of type U(* t  r) and K* , r) which were used in 

the preceding paragraph. 

M3(?,r,*|> = 7 feif-j+jH\^)'m"{SVr)\J 

w*^--? f(3*2 
1 

- — M^(f,r,w). 

Fig. 13-17 show the function of Kf,r) and the sections 

in the vertical field*of functions M4(f,r,j|) and M3(f,r,|). 

The analysis of the values of function I(C,r) (Fig. 13) 

shows that the first terra on the right (3.24) calculated ac- 

cording to altitude, steadily vanishes with the vaning f . 

(continued) 

>M,       1   tt 

w4--$-7M-'>vfci'"**■*, 
-1 

+ — M3 ($,r,7j) f<<M (|/j,r), 

5S 



Function %\(( ,r ,j|) (Fig; 14 and 15) is used for calculat- 

ing the irregular distribution of the local heat flux along 

the vertical. The first two integrals on the right (3.24) 

give complete data on the influence of local heat flux distri- 

buted over the entire atmosphere and oh the temperature change 

at a fixed point. 

Analytically, function M^^r,^) consists of two parts: 

W.*Si(> -X (£,r,^) - -. M3 (£,r,^) (3.26 

*K»%> *:.~ \i  X (X * f ^ ^ ^(l* ^ " 1{H*T)V-   (3-'2' 

ntti 

0      6,1    0,+   0ß     <SW9 IJQtf 

Fig. 13. Graph of Function I(r,r) 
for various J';i- 
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In the environment of radius r«r0.5 X(/,r,/j) forms the 

main part of values M^(£,r,«). On the other hand, A. M^(f,r.* 

appears to. be relatively small. With higher values of r(r^i; 

the corresponding equilibrium of both components contained in 

M^Cfjr,«), is outbalanced; but each of these components is 

small» 

Function U^(Ctrt^)  (Pig. 16 and 17) gives an idea of the * 

sphere of influence of the dynamic factors m2j-f(T,A2) f 

f *"(s!,AT)^ P TYJ on tne cMnS® öf temperature at the re 

spective point on level £  . This function has its maximum 

values in the immediate vicinity of the examined point and 

vanishes with the increasing r but also in the direction of 

the upper and lower boundaries of the atmosphere, M « 0 and 

iSlM3(f,r,)|) -0, if f^O, 

It can be easily recognized that with higher r values 

function M^{^,r,») is presented in an asymptotic manner as 
1   - r 

follows: ~2~ ä ** IT . According to the increase of r values, 

the area of maximum values of function M^(f,r,«) with level 

£ is formed at the upper part. 

The result of the analysis of the properties of function 

M^jr,^) is that the temperature change at any level £ ex- 

pressed by the last term in (3.24)* is determined by the dy- 

namic factors of the atmospheric layers bordering level f 

to a greater extent. In regard to level £ the dynamic factor, 

of the upper layers have a higher if^^ü^iy^i&p^ than simi 

lar factors in lower layers. 

An 



Fig, 14. Field of Function 
M4^»r,/j ) with f ,r;0.7 

Fig. 1$. Field of Function 
M4(r,-f^)'-with- C= 0.5 
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£ T 
Now we assume in what manner the solution for y- des- 

cribes the change of temperature at the upper border of the 

atmosphere. 

Fig. 16. Field of Function 
M3TC, r,f) with  5= 0.7 

Fig. 17. Field of Function 
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With   €~>Q function K^, r) -^0, M4( £ , r,yj )  is con- 

Si r      ■      i 
verted to 

^   r i        i 
£1' 1(1, r) - --. U(l, p)L M3tr . r.tf ) and 

«1 U{ 1, r). Then solution (3.24) takes the following shape 
2£ ' . ■-■  - 

with I~$»0: 

00 2/r     - 

0 o 

U«(l,r) 

£=o   4 
-rd<?dr f 

oo 2r 
1 

f  
2r 

r 

nf 

o o 

g        g       ,^Tl   ü(l,r) 
-r(T,Az)-f -r(2,£T)4 £--*/   -rdfdr, 
£        t      (  Mjp  =o  2 

(3.22 

Analogous to (2.56) 

ü'(l,r) s 
'U(l,r) with r > 0, 

10 with r s 0. 

Now vre recall correlation (3.3) 

* PC \ 
— (z,Az)  fi 

R 
•M     '«HI        «■)«■» 

g f(T' 
Assuming that 

lim   | f JL 
■ 

~g 
2', A-ssV f fitt 

>r R     g g „^T 

s 0    , (3.29 

Qualification (3.29) means that the kinetic energy of the v 
/ Tj£     ■' ■■■.■■ v ^:>-— •'»--■-/■     ■:.— ..■*; 

of mass -z~   according to altitude does not increase faster t 

the increase of -- . 



we obtain 

- 0.        (3.3C f S-.  ■  ■   8 -    ^   - ^T 

The result of (3.30) is that derivatives y-  and -^ at 

the upper border of the atmosphere equal zero; this means tha. 

the temperature on the surface  fs const, is constant with 

£ ~>0. In other words,   ,; 

(T, z)<m0 = 0. 

We further assume that £ -^ 0 

(3.3 

/•111    S0. ^3.3 

Meeting conditions (3.30) to (3-32) from (3.2$) we obtain th 

result: . , 

ill    =0. ,     ., ...   (3-3 
2tf $ ro y' -■;.; 

4. F.miat.ions for Vertical Velocity» 

Vertical motion appears as a component of the mechanism 

of atmospheric circulation. The redistribution of kinetic, r 

tential and internal energies' of air from one level to the 
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other is realized through vertical currents. Therefore, in the 

study of atmospheric processes the examination of vertical 

motion should be given careful attention. 

At the same time, vertical motions are of interest as su? 

because they are the main factor in the process of formation; 

of cloud conditions and precipitation. : 

To obtain an equation for vertical motion £ in the at- 

Biosphere, it is indispensible to exclude derivatives *~ 
^T> '   \ '■''■"  ' 

ar,ci J-i from system (2*1) and {2.3)* ,   ., 
Jt, . _ ■ (2A) 
For this purpose ''"-iai^differentiate'the equation^with L  , 

v *  .■.•'■''      . ■}.'■•■ 

We obtain: 

,9 *> I2  rr 
pg" T{2 

it )z 
~U,&z)  + ßjß  I . (4 

The equation of statics gives us correlations 

2z\ R     1 >T 

n  iATtj=" ? T ATt * (4.2 

--r  J-r(z,Az) *   ^ 
^C    t r>* 

R     1       E g 
-L v-   U(T,^a)   f -r(a,AT)  f 
g 

(4.3 

ffl! 

Vie take  (4.2)  and  (4.3)  as afisis for (4.D. Then we obtaii 

6ß 



PR M 
(4.* 

V/e exclude the derivative^ (4.4) through the equation of 

heat flux (2.2) and obtain: 

r
2^[f ~2A [% >^ä = W-i'Q U.: 

f3t*,y,f) - - P p'ff* (T-sH f * 'f(t'Ai) + TU,AT 

■AM«»» (4. 

We assume that the changes of value T(# -^) in regard, 

the vertical and horizontal are small compared to the rela- 

tive changes of vertical velocity. Thus equation (4.5) can 

formulated in the following manner: ., 

2-;>ar ■f ?:/-—g * m2A^ = Cf3^»7»f)-.' (4.' 

m2 - parameter introduced above. 

The limit conditions for equation (4.7) are as follows 

*Z*i * o, 
(4 

r-fsi 
= r< o » 
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f0  s gfo ">£*"  -.small quantity. . ■. ■ _ 

We now come to the cylindrical coordinate system r, f i C » 

already tised above. 

In this coordinate system equation (4*7) assumes the fol- 

lowing shape: 

2 frx i $     ;€-■ i   ¥<£ 
mm»     ima*w*   .J* «www«  J»  ««« 

r £ r  £ r  r2 J "??2 * ""' V"* r—" i "2""T"5'" = ?f3*r»f »^ ^ (4#9) 

Integrating this equation with f  from zero to Zir  , we 

obtain the following equation for function f- «j^J r&f  V; 

r2 7:5 * -- ~* 4- - fF3(r- J >■       l4-io> 

"2JT • 

F3(r,f ) V —  f3(r,f , O df .       (4.11) 

The limit conditions of equation (4.10) are äs follows: 

/ßj        r 0, 
its0 

■Ä        =F0(r). T|c=l ° 

The solution of equation (4.10) is obtained through 

r(r,f) = (    $(p ,q)J0{rp)fdf. (4.13: 
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As we have done above, we assume that function F^(r,£) 

and /F0(r) can be presented as intervals according to Fourie- 

' Bess el' • • .'■ ■■ •/■ 

CO co N 

l!jir>C)-.s A .■J0
{rj),/d/'   \ .■y3^,»t)J0(/»r')r«dr», 

o 

00 

o 

CO 7 (4.14) 
^^   ViJo{7}fdf.l   t^(r») J0(^r*)r*dr» 

. V/e take (4.13) and (4.14) as basis for (4.10) and (4.12). 

Analogous to the above we obtain the following differential 

equations and limit conditions for the new unknown function' 

.2 ^s  a 

\.T?Zf     CF*if t() (4.15) 

t r»o 
,sl = G3(yD) 

(4.16) 
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CO 

F3{M} -   \   P3(r,»S> Jo<f r*> r,drS 

GO 
(4.17> 

&3(f) s \   ro(rn J0U»)r'dr« 

Following is the general solution of the equation (4.15) 

M-f)' - (f" 1 U.1Ö) 

as above 

In the selection of ^ and C2 we will see to it that solution 

(4.IS) meets limit conditions (4.16)* The result is as follows 

- (ll^ (4*19) 
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.Bearing In .mind that ^(ft0  and d^if)  can be expressed 

the integral way (4.17), we will use it as a basis for (4.19 

Moreover, the obtained expression is.taken as a bases for 

(4.13). Now we change the order of integration and assume th 

r s 0. 

Fig, 1&. Graph of Function 
for various I • 

Then we obtain: 

; '1 <to"'•'■ 

*r(£) • - \ ( fyr'tf) CM3(C, r»,/y)rMr»d^| f 

o o 

CO 

+ .t£<r»)£i{{, rt) r'dT'* (4.J 
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M^t» r'.Jf) and I{J, r*) - Functions (3.22) and (3.23) in- 

troduced previously. 

Substituting ?3(r,^) and r0(r) in (4.20) according to 

(4.11) and (4.12) through (4.6), we formulate solution (4.20) 

in the final form as follows: 

1 op 2/r 

r( J ) . --- f (    (   P —g (A A(T,a) + (T,A s) f (2, AT)  , 

o b b 

f ££ + #~—IfM3(f, r,^)rdf drd^ + 

co    2/r 

*ST'(     (   6fo~2rKf,r)rdfdr. (4.2. 
o     o 

The graphic presentation of function fl(£,r) with variou 

f (Fig. 18) shows that the second terra in the right part(4.2 

quickly vanishes at the respective altitude. 

Considering that to s gp0 «v-r
2 usually does not exceec 

10 millibar (12 hours), we may disregard the second component 

in (4.21). 

Fig. 19 and 20 show the fields of functions C^i€,rt») 

for different £ . 
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Fig« 19. Field of Function 
£M3(f, r>Jj) with    £- 0.9 

r 

i 
i 

~4~  

<3'-fe%i>v ■•■s 

"S    in; 
... . }\ „ i &2^ 

at: 

r 

Fig. 20. Field of Function fM,(?,r>w! 
with r- 0,7      "*    « 
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The properties of function M3({, r,/|) show that in the 

formation of vertical motions in the intermediary tropospher- 

the dynamic processes in the intermediary and upper parts of 

the troposphere play the decisive part. The vertical motions 

at the level of 3-5 km are mainly determined by particularity 

of the pressure fields, temperature and heat flux at the 3-Ö 

levels. 

Equation (4.21) shows that in the source region of the 

heat flux the terras of type A £f (T,*) + ™] will always 

provide the anabatic motions* But in the heat discharge re- 

gions they will provide the catabatic motions. Consequently 

part of the heat influx entering any important region of th< 

atmosphere is transferred, together with the vertical curret 

to higher layers. 

On the other hand, the heat discharge is partly compen- 

sated by the transfer of heat through vertical currents fror 

higher layers. 

This points out the important role played by vertical mc 

tions of the atmosphere in the redistribution of thermic ene 

Factor Ä-«? in the solution for f which appears ir 

the initial equations of the parameter change of the coriol, 

according to latitude, is important only in the presence of 

great thermic disturbances of the atmosphere. In the easter? 

part of the thermal crest this factor becomes an anabatic c 

ponent of vertical velocity, in the western part of the ere 

however, a catabatic component. 

r 



3 

Literature. 

1« B*N. Eiinova. The Hydrodyn&mic Theory of Pressure Waves, 

temperature Waves, and Action Centers of the-At- 

mosphere. State Academy of Sciences'-of the USSR, 

39, No* 7, 1943» 

2„ I.A« Kibel. Contribution on the Meteorology of Mechanics 

Equations of Baroclyne Fluid» Bull., Ac.Sc, of the . 

USSB2 Geogr« and Geophys. Series, No.r, 1940* 

3. A»M« Obuchov. On. the Problem of Geostrophic Winds. Bull* 

Ac.Sc« USSEj Geogr. and Geophys* Series, No .4, 1949 

4. X.K. Ryshik and I*S. Gradstein. Tables on Integrals, Sun 

totalsj Series and Products* State Techn. Publ., 

M.-L., 1951« 

5« S.N. Troitskyj. Determination of Aerosymptotic Criteria 

for Weather Forecasts, 1933« 

6. M.E. Shvetz. Determination of Vertical Velocities in Mob 

Masses Through Hydrodynamlc Equations, Bull.,Ac.Sc. 

USSR, Geogr. and Geophys. Section, No.4« 1950. 

7. Charney, Fjoertoft, Neumann. Numerical Integration of Ba 

tropic Vorticity Equations. Tellus, Vol.2, No.4»195 

77 

i 



Ö. Ertel. On Nev; Atmospheric Equations of Motion. Meteorol. 

Mag., Vol. 50, No.3, 1941. 

9. L. Richardson. Weather Forecasting by Numerical Processes 

Cambridge» 1922. 

% 

-  END - 

70 


